4.6 Article

Oxidative Stress-Induced Glomerular Mineralocorticoid Receptor Activation Limits the Benefit of Salt Reduction in Dahl Salt-Sensitive Rats

Journal

PLOS ONE
Volume 7, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0041896

Keywords

-

Funding

  1. Kagawa University Young Scientists
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan [23590303]
  3. Grants-in-Aid for Scientific Research [22591018, 23590303] Funding Source: KAKEN

Ask authors/readers for more resources

Background: Mineralocorticoid receptor (MR) antagonists attenuate renal injury in salt-sensitive hypertensive rats with low plasma aldosterone levels. We hypothesized that oxidative stress causes MR activation in high-salt-fed Dahl salt-sensitive rats. Furthermore, we determined if MR activation persisted and induced renal injury, even after switching from a high- to a normal-salt diet. Methods and Findings: High-salt feeding for 4 weeks increased dihydroethidium fluorescence (DHE, an oxidant production marker), p22phox (a NADPH oxidase subunit) and serum and glucocorticoid-regulated kinase-1 (SGK1, an MR transcript) in glomeruli, compared with normal-salt feeding, and these changes persisted 4 weeks after salt withdrawal. Tempol treatment (0.5 mmol/L) during high-salt feeding abolished the changes in DHE fluorescence, p22phox and SGK1. Dietary salt reduction after a 4-week high-salt diet decreased both blood pressure and proteinuria, but was associated with significantly higher proteinuria than in normal control rats at 4 weeks after salt reduction. Administration of tempol during high-salt feeding, or eplerenone, an MR antagonist (100 mg/kg/day), started after salt reduction, recovered proteinuria to normal levels at 4 weeks after salt reduction. Paraquat, a reactive oxygen species generator, enhanced MR transcriptional activity in cultured rat mesangial cells and mouse podocytes. Conclusions: These results suggest that oxidative stress plays an important role in glomerular MR activation in Dahl salt-sensitive rats. Persistent MR activation even after reducing salt intake could limit the beneficial effects of salt restriction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available