4.6 Article

β-Adrenergic Stimulation Increases Cav3.1 Activity in Cardiac Myocytes through Protein Kinase A

Journal

PLOS ONE
Volume 7, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0039965

Keywords

-

Funding

  1. National Institutes of Health [R01-HL088243]
  2. American Heart Association [0730347N, 09PRE2260943]

Ask authors/readers for more resources

The T-type Ca2+ channel (TTCC) plays important roles in cellular excitability and Ca2+ regulation. In the heart, TTCC is found in the sinoatrial nodal (SAN) and conduction cells. Cav3.1 encodes one of the three types of TTCCs. To date, there is no report regarding the regulation of Cav3.1 by beta-adrenergic agonists, which is the topic of this study. Ventricular myocytes (VMs) from Cav3.1 double transgenic (TG) mice and SAN cells from wild type, Cav3.1 knockout, or Cav3.2 knockout mice were used to study beta-adrenergic regulation of overexpressed or native Cav3.1-mediated T-type Ca2+ current (ICa-T(3.1)). ICa-T(3.1) was not found in control VMs but was robust in all examined TG-VMs. A b-adrenergic agonist (isoproterenol, ISO) and a cyclic AMP analog (dibutyryl-cAMP) significantly increased ICa-T(3.1) as well as ICa-L in TG-VMs at both physiological and room temperatures. The ISO effect on ICa-L and ICa-T in TG myocytes was blocked by H89, a PKA inhibitor. ICa-T was detected in control wildtype SAN cells but not in Cav3.1 knockout SAN cells, indicating the identity of ICa-T in normal SAN cells is mediated by Cav3.1. Real-time PCR confirmed the presence of Cav3.1 mRNA but not mRNAs of Cav3.2 and Cav3.3 in the SAN. ICa-T in SAN cells from wild type or Cav3.2 knockout mice was significantly increased by ISO, suggesting native Cav3.1 channels can be upregulated by the beta-adrenergic (beta-AR) system. In conclusion, b-adrenergic stimulation increases ICa-T(3.1) in cardiomyocytes, which is mediated by the cAMP/PKA pathway. The upregulation of ICa-T(3.1) by the b-adrenergic system could play important roles in cellular functions involving Cav3.1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available