4.6 Article

Immunogenicity and Protective Capacity of a Virosomal Respiratory Syncytial Virus Vaccine Adjuvanted with Monophosphoryl Lipid A in Mice

Journal

PLOS ONE
Volume 7, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0036812

Keywords

-

Funding

  1. Consortium of Top Institute Pharma, the Netherlands [T4-214]

Ask authors/readers for more resources

Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFN gamma and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available