4.6 Article

Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90

Journal

PLOS ONE
Volume 7, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0036899

Keywords

-

Funding

  1. Research Council of Lithuania [LIG-16/2010]
  2. Lithuanian Science Council
  3. European Union

Ask authors/readers for more resources

The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic K-d approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available