4.6 Article

Curcumin Loaded-PLGA Nanoparticles Conjugated with Tet-1 Peptide for Potential Use in Alzheimer's Disease

Journal

PLOS ONE
Volume 7, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0032616

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan
  2. Grants-in-Aid for Scientific Research [22560209] Funding Source: KAKEN

Ask authors/readers for more resources

Alzheimer's disease is a growing concern in the modern world. As the currently available medications are not very promising, there is an increased need for the fabrication of newer drugs. Curcumin is a plant derived compound which has potential activities beneficial for the treatment of Alzheimer's disease. Anti-amyloid activity and anti-oxidant activity of curcumin is highly beneficial for the treatment of Alzheimer's disease. The insolubility of curcumin in water restricts its use to a great extend, which can be overcome by the synthesis of curcumin nanoparticles. In our work, we have successfully synthesized water-soluble PLGA coated-curcumin nanoparticles and characterized it using different techniques. As drug targeting to diseases of cerebral origin are difficult due to the stringency of blood-brain barrier, we have coupled the nanoparticle with Tet-1 peptide, which has the affinity to neurons and possess retrograde transportation properties. Our results suggest that curcumin encapsulated-PLGA nanoparticles are able to destroy amyloid aggregates, exhibit anti-oxidative property and are non-cytotoxic. The encapsulation of the curcumin in PLGA does not destroy its inherent properties and so, the PLGA-curcumin nanoparticles can be used as a drug with multiple functions in treating Alzheimer's disease proving it to be a potential therapeutic tool against this dreaded disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available