4.7 Article

A systems approach to healthcare: Agent-based modeling, community mental health, and population well-being

Journal

ARTIFICIAL INTELLIGENCE IN MEDICINE
Volume 63, Issue 2, Pages 61-71

Publisher

ELSEVIER
DOI: 10.1016/j.artmed.2014.08.006

Keywords

Agent-based; Decision support; Community healthcare; Systems analysis; Readmission; Mental health systems

Funding

  1. University of Pennsylvania Leonard Davis Institute of Health Economics
  2. Sr. Design Fund of the School of Engineering
  3. Year of Games Fund of the School of Nursing

Ask authors/readers for more resources

Purpose: Explore whether agent-based modeling and simulation can help healthcare administrators discover interventions that increase population wellness and quality of care while, simultaneously, decreasing costs. Since important dynamics often lie in the social determinants outside the health facilities that provide services, this study thus models the problem at three levels (individuals, organizations, and society). Methods: The study explores the utility of translating an existing (prize winning) software for modeling complex societal systems and agent's daily life activities (like a Sim City style of software), into a desired decision support system. A case study tests if the 3 levels of system modeling approach is feasible, valid, and useful. The case study involves an urban population with serious mental health and Philadelphia's Medicaid population (n = 527,056), in particular. Results: Section 3 explains the models using data from the case study and thereby establishes feasibility of the approach for modeling a real system. The models were trained and tuned using national epidemiologic datasets and various domain expert inputs. To avoid co-mingling of training and testing data, the simulations were then run and compared (Section 4.1) to an analysis of 250,000 Philadelphia patient hospital admissions for the year 2010 in terms of re-hospitalization rate, number of doctor visits, and days in hospital. Based on the Student t-test, deviations between simulated vs. real world outcomes are not statistically significant. Validity is thus established for the 2008-2010 timeframe. We computed models of various types of interventions that were ineffective as well as 4 categories of interventions (e.g., reduced per-nurse caseload, increased check-ins and stays, etc.) that result in improvement in well-being and cost. Conclusions: The 3 level approach appears to be useful to help health administrators sort through system complexities to find effective interventions at lower costs. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available