4.6 Article

Cystathionine Beta-Synthase Deficiency Causes Fat Loss in Mice

Journal

PLOS ONE
Volume 6, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0027598

Keywords

-

Funding

  1. National Institutes of Health [HL50299, CA06927]
  2. Hempling Foundation for homocystinuria research
  3. Commonwealth of Pennsylvania

Ask authors/readers for more resources

Cystathionine beta synthase (CBS) is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy), decreased levels of plasma total cysteine (tCys), and often a marfanoid appearance characterized by thinness and low body-mass index (BMI). Here, we characterize the growth and body mass characteristics of CBS deficient TgI278T Cbs(-/-) mice and show that these animals have significantly decreased fat mass and tCys compared to heterozygous sibling mice. The decrease in fat mass is accompanied by a 34% decrease in liver glutathione (GSH) along with a significant decrease in liver mRNA and protein for the critical fat biosynthesizing enzyme Stearoyl CoA desaturase-1 (Scd-1). Because plasma tCys has been positively associated with fat mass in humans, we tested the hypothesis that decreased tCys in TgI278T Cbs(-/-) mice was the cause of the lean phenotype by placing the animals on water supplemented with N-acetyl cysteine (NAC) from birth to 240 days of age. Although NAC treatment in TgI278T Cbs(-/-) mice caused significant increase in serum tCys and liver GSH, there was no increase in body fat content or in liver Scd-1 levels. Our results show that lack of CBS activity causes loss of fat mass, and that this effect appears to be independent of low serum tCys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available