4.6 Article

The Mycotoxin Deoxynivalenol Potentiates Intestinal Inflammation by Salmonella Typhimurium in Porcine Ileal Loops

Journal

PLOS ONE
Volume 6, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0023871

Keywords

-

Funding

  1. Institute for the Promotion of Innovation in Science Technology in Flanders (IWT Flanders), Brussels, Belgium [070574]
  2. BBSRC [BBS/E/F/00044404] Funding Source: UKRI
  3. Biotechnology and Biological Sciences Research Council [BBS/E/F/00044404] Funding Source: researchfish

Ask authors/readers for more resources

Background and Aims: Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium. Methodology: By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium. Results: A significant higher expression of IL-12 and TNF alpha and a clear potentiation of the expression of IL-1 beta, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 mu g/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 mu g/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON. Conclusion: These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available