4.6 Article

Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles

Journal

PLOS ONE
Volume 6, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0024374

Keywords

-

Funding

  1. National Institutes of Health [Ca135001, CA136494, GM077173]

Ask authors/readers for more resources

Background: Inorganic nanoparticles provide promising tools for biomedical applications including detection, diagnosis and therapy. While surface properties such as charge are expected to play an important role in their in vivo behavior, very little is known how the surface chemistry of nanoparticles influences their pharmacokinetics, tumor uptake, and biodistribution. Method/Principal Findings: Using a family of structurally homologous nanoparticles we have investigated how pharmacological properties including tumor uptake and biodistribution are influenced by surface charge using neutral (TEGOH), zwitterionic (Tzwit), negative (TCOOH) and positive (TTMA) nanoparticles. Nanoparticles were injected into mice (normal and athymic) either in the tail vein or into the peritoneum. Conclusion: Neutral and zwitterionic nanoparticles demonstrated longer circulation time via both IP and IV administration, whereas negatively and positively charged nanoparticles possessed relatively short half-lives. These pharmacological characteristics were reflected on the tumor uptake and biodistribution of the respective nanoparticles, with enhanced tumor uptake by neutral and zwitterionic nanoparticles via passive targeting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available