4.6 Article

HMGB1 Attenuates Cardiac Remodelling in the Failing Heart via Enhanced Cardiac Regeneration and miR-206-Mediated Inhibition of TIMP-3

Journal

PLOS ONE
Volume 6, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0019845

Keywords

-

Funding

  1. Italian Ministry of Health

Ask authors/readers for more resources

Aims: HMGB1 injection into the mouse heart, acutely after myocardial infarction (MI), improves left ventricular (LV) function and prevents remodeling. Here, we examined the effect of HMGB1 in chronically failing hearts. Methods and Results: Adult C57 BL16 female mice underwent coronary artery ligation; three weeks later 200 ng HMGB1 or denatured HMGB1 (control) were injected in the peri-infarcted region of mouse failing hearts. Four weeks after treatment, both echocardiography and hemodynamics demonstrated a significant improvement in LV function in HMGB1-treated mice. Further, HMGB1-treated mice exhibited a similar to 23% reduction in LV volume, a similar to 48% increase in infarcted wall thickness and a similar to 14% reduction in collagen deposition. HMGB1 induced cardiac regeneration and, within the infarcted region, it was found a similar to 2-fold increase in c-kit(+) cell number, a similar to 13-fold increase in newly formed myocytes and a similar to 2-fold increase in arteriole length density. HMGB1 also enhanced MMP2 and MMP9 activity and decreased TIMP-3 levels. Importantly, miR-206 expression 3 days after HMGB1 treatment was 4-5-fold higher than in control hearts and 20-25 fold higher that in sham operated hearts. HMGB1 ability to increase miR-206 was confirmed in vitro, in cardiac fibroblasts. TIMP3 was identified as a potential miR-206 target by TargetScan prediction analysis; further, in cultured cardiac fibroblasts, miR-206 gain- and loss-of-function studies and luciferase reporter assays showed that TIMP3 is a direct target of miR-206. Conclusions: HMGB1 injected into chronically failing hearts enhanced LV function and attenuated LV remodelling; these effects were associated with cardiac regeneration, increased collagenolytic activity, miR-206 overexpression and miR-206 mediated inhibition of TIMP-3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available