4.6 Article

Increased Inflammatory Signaling and Lethality of Influenza H1N1 by Nuclear Thioredoxin-1

Journal

PLOS ONE
Volume 6, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0018918

Keywords

-

Funding

  1. National Institute of Environmental Health Sciences [ES011195, ES009047]
  2. Grants-in-Aid for Scientific Research [22657033] Funding Source: KAKEN

Ask authors/readers for more resources

Background: Cell culture studies show that the antioxidant thiol protein, thioredoxin-1 (Trx1), translocates to cell nuclei during stress, facilitates DNA binding of transcription factors NF-kappa B and glucocorticoid receptor (GR) and potentiates signaling in immune cells. Excessive proinflammatory signaling in vivo contributes to immune hyper-responsiveness and disease severity, but no studies have addressed whether nuclear Trx1 mediates such responses. Methodology/Principal Findings: Transgenic mice (Tg) expressing human Trx1 (hTrx1) with added nuclear localization signal (NLS) showed broad tissue expression and nuclear localization. The role of nuclear Trx1 in inflammatory signaling was examined in Tg and wild-type (WT) mice following infection with influenza (H1N1) virus. Results showed that Tg mice had earlier and more extensive NF-kappa B activation, increased TNF-alpha and IL-6 expression, greater weight loss, slower recovery and increased mortality compared to WT. Decreased plasma glutathione (GSH) and oxidized plasma GSH/GSSG redox potential (EhGSSG) following infection in Tg mice showed that the increased nuclear thiol antioxidant caused a paradoxical downstream oxidative stress. An independent test of this nuclear reductive stress showed that glucocorticoid-induced thymocyte apoptosis was increased by NLS-Trx1. Conclusion/Significance: Increased Trx1 in cell nuclei can increase severity of disease responses by potentiation of redoxsensitive transcription factor activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available