4.6 Article

Prolonged Mechanical Ventilation Induces Cell Cycle Arrest in Newborn Rat Lung

Journal

PLOS ONE
Volume 6, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0016910

Keywords

-

Funding

  1. Canadian Institute of Health Research [MOP-15272]
  2. Canadian Foundation for Innovation
  3. Sophia Children's Hospital

Ask authors/readers for more resources

Rationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. Methods: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL. kg(-1)). Measurement and Main Results: Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1) was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2), decreased that of p16(INK4a), while the levels of p21(Waf/Cip1) and p15(INK4b) were unchanged. Increased p27(Kip1) expression coincided with reduced phosphorylation of p27(Kip1) at Thr(157), Thr(187) and Thr(198) (p<0.05), thereby promoting its nuclear localization. Similar -but more rapid-changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg(-1)) and when fetal lung epithelial cells were subjected to a continuous (17% elongation) cyclic stretch. Conclusion: This is the first demonstration that prolonged (24 h) of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G(1) and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip)1, p57(Kip2)) from the Kip family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available