4.6 Article

Hypoxia Selects Bortezomib-Resistant Stem Cells of Chronic Myeloid Leukemia

Journal

PLOS ONE
Volume 6, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0017008

Keywords

-

Funding

  1. Associazione Italiana per la Ricerca sul Cancro (AIRC) [IG5220]
  2. Associazione Italiana per la lotta contro le Leucemie e i Linfomi (AIL, sezione di Prato), Fondazione Cassa di Risparmio di Volterra
  3. Federazione Italiana per la Ricerca sul Cancro (FIRC)
  4. Istituto Toscano Tumori (ITT)

Ask authors/readers for more resources

We previously demonstrated that severe hypoxia inhibits growth of Chronic Myeloid Leukemia (CML) cells and selects stem cells where BCR/Abl(protein) is suppressed, although mRNA is not, so that hypoxia-selected stem cells, while remaining leukemic, are independent of BCR/Abl signaling and thereby refractory to Imatinib-mesylate. The main target of this study was to address the effects of the proteasome inhibitor Bortezomib (BZ) on the maintenance of stem or progenitor cells in hypoxic primary cultures (LC1), by determining the capacity of LC1 cells to repopulate normoxic secondary cultures (LC2) and the kinetics of this repopulation. Unselected K562 cells from day-2 hypoxic LC1 repopulated LC2 with rapid, progenitor-type kinetics; this repopulation was suppressed by BZ addition to LC1 at time 0, but completely resistant to day-1 BZ, indicating that progenitors require some time to adapt to stand hypoxia. K562 cells selected in hypoxic day-7 LC1 repopulated LC2 with stem-type kinetics, which was largely resistant to BZ added at either time 0 or day 1, indicating that hypoxia-selectable stem cells are BZ-resistant per se, i.e. before their selection. Furthermore, these cells were completely resistant to day-6 BZ, i.e. after selection. On the other hand, hypoxia-selected stem cells from CD34-positive cells of blast-crisis CML patients appeared completely resistant to either time-0 or day-1 BZ. To exploit in vitro the capacity of CML cells to adapt to hypoxia enabled to detect a subset of BZ-resistant leukemia stem cells, a finding of particular relevance in light of the fact that our experimental system mimics the physiologically hypoxic environment of bone marrow niches where leukemia stem cells most likely home and sustain minimal residual disease in vivo. This suggests the use of BZ as an enhanced strategy to control CML. in particular to prevent relapse of disease, to be considered with caution and to need further deepening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available