4.7 Article

Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited

Journal

ACTA MATERIALIA
Volume 85, Issue -, Pages 279-289

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.11.031

Keywords

Magnesium film; Hydrogen diffusion; Hydrogen absorption; Hydride nucleation; Driving force

Funding

  1. DFG [SFB602, PU131/9, PU131/10]

Ask authors/readers for more resources

Electrochemical hydrogen permeation measurements and in situ gas-loading X-ray diffraction measurements were performed on polycrystalline Mg films. Hydrogen diffusion constants, the hydride volume content and the in-plane stress were determined for different values of driving forces at 300 K. For alpha-Mg-H, a hydrogen diffusion constant of D-H(Mg) = 7(+/- 2) . 10(-11) m(2) s(-1) was determined. For higher concentrations, different kinetic regimes with reduced apparent diffusion constants Vat were found, depending on the driving force, decreasing to about D-H(tot) = 10(-18) m(2) s(-1). This lowest measured diffusion constant is two orders of magnitude larger than that of bulk beta-MgH2, and the difference is ascribed to a contribution from a fast diffusion along grain boundaries. The different kinetics regimes are attributed to the spatial distribution of hydrides. A heterogeneous hydride nucleation and growth model is suggested that is based on hemispherical hydrides spatially distributed according to the nuclei densities expressed as a function of the driving force. The model allows us to qualitatively explain the complex stress development, the different diffusion regimes and the blocking-layer thickness. As the blocking-layer thickness inversely scales with the driving force, small driving forces allow the hydriding of large film volume fractions. Maximum stress situations occur for hydride distances reaching four times the hydride radius and for hydride distances equaling the film thickness. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available