4.6 Article

p120ctn and P-Cadherin but Not E-Cadherin Regulate Cell Motility and Invasion of DU145 Prostate Cancer Cells

Journal

PLOS ONE
Volume 5, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0011801

Keywords

-

Funding

  1. Cancer Research UK
  2. Bettencourt-Schueller Foundation
  3. European Commission [LSHG-CT-2003-502935]
  4. Kings College London School of Biomedical and Health Sciences

Ask authors/readers for more resources

Background: Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, beta-catenin and alpha-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other adherens junction components on cell-cell adhesion have not been compared with that of p120ctn. Methodology/Principal Findings: We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-cadherin, beta-catenin and alpha-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-cadherin, beta-catenin and alpha-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens junction proteins. Conclusions/Significance: Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, beta-catenin or alpha-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available