4.6 Article

Functional Biogeography as Evidence of Gene Transfer in Hypersaline Microbial Communities

Journal

PLOS ONE
Volume 5, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0012919

Keywords

-

Funding

  1. National Science Foundation [DEB-021212487]
  2. United States Department of Agriculture CSREES [2006-34526-17001]
  3. Utah Agricultural Experiment Station at Utah State University

Ask authors/readers for more resources

Background: Horizontal gene transfer (HGT) plays a major role in speciation and evolution of bacteria and archaea by controlling gene distribution within an environment. However, information that links HGT to a natural community using relevant population-genetics parameters and spatial considerations is scarce. The Great Salt Lake (Utah, USA) provides an excellent model for studying HGT in the context of biogeography because it is a contiguous system with dispersal limitations due to a strong selective salinity gradient. We hypothesize that in spite of the barrier to phylogenetic dispersal, functional characteristics-in the form of HGT-expand beyond phylogenetic limitations due to selective pressure. Methodology and Results: To assay the functional genes and microorganisms throughout the GSL, we used a 16S rRNA oligonucleotide microarray (Phylochip) and a functional gene array (GeoChip) to measure biogeographic patterns of nine microbial communities. We found a significant difference in biogeography based on microarray analyses when comparing Sorensen similarity values for presence/absence of function and phylogeny (Student's t-test; p = 0.005). Conclusion and Significance: Biogeographic patterns exhibit behavior associated with horizontal gene transfer in that informational genes (16S rRNA) have a lower similarity than functional genes, and functional similarity is positively correlated with lake-wide selective pressure. Specifically, high concentrations of chromium throughout GSL correspond to an average similarity of chromium resistance genes that is 22% higher than taxonomic similarity. This suggests active HGT may be measured at the population level in microbial communities and these biogeographic patterns may serve as a model to study bacteria adaptation and speciation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available