4.6 Article

Control Growth Factor Release Using a Self-Assembled [polycation:heparin] Complex

Journal

PLOS ONE
Volume 5, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0011017

Keywords

-

Funding

  1. NSF [DMR-1005766]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1005766] Funding Source: National Science Foundation

Ask authors/readers for more resources

The importance of growth factors has been recognized for over five decades; however their utilization in medicine has yet to be fully realized. This is because free growth factors have short half-lives in plasma, making direct injection inefficient. Many growth factors are anchored and protected by sulfated glycosaminoglycans in the body. We set out to explore the use of heparin, a well-characterized sulfated glycosaminoglycan, for the controlled release of fibroblast growth factor-2 (FGF-2). Heparin binds a multitude of growth factors and maintains their bioactivity for an extended period of time. We used a biocompatible polycation to precipitate out the [heparin: FGF-2] complex from neutral buffer to form a release matrix. We can control the release rate of FGF-2 from the resultant matrix by altering the molecular weight of the polycation. The FGF-2 released from the delivery complex maintained its bioactivity and initiated cellular responses that were at least as potent as fresh bolus FGF-2 and fresh heparin stabilized FGF-2. This new delivery platform is not limited to FGF-2 but applicable to the large family of heparin-binding growth factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available