4.6 Article

Local Adaptation of Aboveground Herbivores towards Plant Phenotypes Induced by Soil Biota

Journal

PLOS ONE
Volume 5, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0011174

Keywords

-

Funding

  1. FWO Research Network
  2. FWO [G.0057.09]
  3. DFG [3966/1-1]

Ask authors/readers for more resources

Background: Soil biota may trigger strong physiological responses in plants and consequently induce distinct phenotypes. Plant phenotype, in turn, has a strong impact on herbivore performance. Here, we tested the hypothesis that aboveground herbivores are able to adapt to plant phenotypes induced by soil biota. Methodology and Principal Findings: We bred spider mites for 15 generations on snap beans with three different belowground biotic interactions: (i) no biota (to serve as control), (ii) arbuscular mycorrhizal fungi and (ii) root-feeding nematodes. Subsequently, we conducted a reciprocal selection experiment using these spider mites, which had been kept on the differently treated plants. Belowground treatments induced changes in plant biomass, nutrient composition and water content. No direct chemical defence through cyanogenesis was detected in any of the plant groups. Growth rates of spider mites were higher on the ecotypes on which they were bred for 15 generations, although the statistical significance disappeared for mites from the nematode treatment when corrected for all multiple comparisons. Conclusion/Significance: These results demonstrate that belowground biota may indeed impose selection on the aboveground insect herbivores mediated by the host plant. The observed adaptation was driven by variable quantitative changes of the different separately studied life history traits (i. e. fecundity, longevity, sex-ratio, time to maturity).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available