4.6 Article

Glucose Metabolism, Islet Architecture, and Genetic Homogeneity in Imprinting of [Ca2+]i and Insulin Rhythms in Mouse Islets

Journal

PLOS ONE
Volume 4, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0008428

Keywords

-

Funding

  1. NIH [RO1 DK46409, R37 DK0469690, 1K01 DK081621]
  2. NIH-NIDDK (National Institutes of Health-National Institute of Diabetes and Digestive and Kidney Diseases)

Ask authors/readers for more resources

We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i)) that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed islet imprinting. We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J) as well as outbred mouse strains (Swiss-Webster; CD1). Second, imprinting was observed in NAD(P) H oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+](i) oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a KATP-channel opener that blocks [Ca2+](i) influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+](i) oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+](i) oscillations. Lastly, to test whether the imprinted [Ca2+](i) patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+](i) oscillations and showed significant mouseto- mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available