4.6 Article

Comparative Genome-Wide Screening Identifies a Conserved Doxorubicin Repair Network That Is Diploid Specific in Saccharomyces cerevisiae

Journal

PLOS ONE
Volume 4, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0005830

Keywords

-

Ask authors/readers for more resources

The chemotherapeutic doxorubicin (DOX) induces DNA double-strand break (DSB) damage. In order to identify conserved genes that mediate DOX resistance, we screened the Saccharomyces cerevisiae diploid deletion collection and identified 376 deletion strains in which exposure to DOX was lethal or severely reduced growth fitness. This diploid screen identified 5-fold more DOX resistance genes than a comparable screen using the isogenic haploid derivative. Since DSB damage is repaired primarily by homologous recombination in yeast, and haploid cells lack an available DNA homolog in G1 and early S phase, this suggests that our diploid screen may have detected the loss of repair functions in G1 or early S phase prior to complete DNA replication. To test this, we compared the relative DOX sensitivity of 30 diploid deletion mutants identified under our screening conditions to their isogenic haploid counterpart, most of which (n = 26) were not detected in the haploid screen. For six mutants (bem1 Delta, ctf4 Delta, ctk1 Delta, hfi1 Delta, nup133 Delta, tho2 Delta) DOX-induced lethality was absent or greatly reduced in the haploid as compared to the isogenic diploid derivative. Moreover, unlike WT, all six diploid mutants displayed severe G1/S phase cell cycle progression defects when exposed to DOX and some were significantly enhanced (ctk1 Delta and hfi1 Delta) or deficient (tho2 Delta) for recombination. Using these and other THO2-like hypo-recombinogenic, diploid-specific DOX sensitive mutants (mft1 Delta, thp1 Delta, thp2 Delta) we utilized known genetic/proteomic interactions to construct an interactive functional genomic network which predicted additional DOX resistance genes not detected in the primary screen. Most (76%) of the DOX resistance genes detected in this diploid yeast screen are evolutionarily conserved suggesting the human orthologs are candidates for mediating DOX resistance by impacting on checkpoint and recombination functions in G1 and/or early S phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available