4.6 Article

Identification of CD133-Positive Radioresistant Cells in Atypical Teratoid/Rhabdoid Tumor

Journal

PLOS ONE
Volume 3, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0002090

Keywords

-

Funding

  1. National Science Council [NSC-96-3111-B-075-001-MY3, 95-2314-B-075-055-MY2, 96-2628-B-010-006-MY3, 96-2314-B-075-024]
  2. Taipei Veterans General Hospital [V96C1-151, V96E1-004, V96ER2-016, V96E2-010]
  3. Joint Projects of UTVGH [VGHUST96-P1-07]
  4. VGHUST96-P1-07
  5. Yen-Tjing-Ling Medical Foundation
  6. Taipei City Hospital [96001-62-014, 96001-62-018, 96002-62-092]
  7. National Yang-Ming University (Ministry of Education, Aim for the Top University Plan), Taiwan

Ask authors/readers for more resources

Atypical teratoid/rhabdoid tumor (AT/RT) is an extremely malignant neoplasm in the central nervous system (CNS) which occurs in infancy and childhood. Recent studies suggested that CD133 could be considered a marker for brain cancer stemlike cells (CSCs). However, the role of CD133 in AT/RT has never been investigated. Herein we report the isolation of CD133-positive cells (CD133(+)), found to have the potential to differentiate into three germ layer tissues, from tissues of nine AT/RT patients. The migration/invasion/malignancy and radioresistant capabilities of CD133(+) were significantly augmented when compared to CD133(-). The clinical data showed that the amount of CD133(+) in AT/RTs correlated positively with the degree of resistance to radiation therapy. Using cDNA microarray analysis, the genotoxic -response profiles of CD133(+) and CD133(-) irradiated with 10 Gy ionizing radiation (IR) were analyzed 0.5, 2, 6, 12 and 24 h post-IR. We then validated these microarray data and showed increased phosphorylation after IR of p-ATM, p-RAD17, and p-CHX2 as well as increased expression of BCL-2 protein in CD133(+) compared to CD133(-). Furthermore, we found that CD133(+) can effectively resist IR with cisplatin-and/or TRAIL-induced apoptosis. Immunohistochemical analysis confirmed the up-regulated expression of p-ATM and BCL-2 proteins in IR-treated CD133(+) xenotransgrafts in SCID mice but not in IR-treated CD133(-). Importantly, the effect of IR in CD133(+) transplanted mice can be significantly improved by a combination of BCL-2 siRNA with debromohymenialdisine, an inhibitor of checkpoint kinases. In sum, this is the first report indicating that CD133(+) AT/RT cells demonstrate the characteristics of CSCs. The IR-resistant and anti-apoptotic properties in CD133(+) may reflect the clinical refractory malignancy of AT/RTs and thus the activated p-ATM pathway and BCL-2 expression in CD133(+) could be possible targets to improve future treatment of deadly diseases like AT/RT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available