4.5 Article

Nitric oxide inhibits platelet adhesion to collagen through cGMP-dependent and independent mechanisms: The potential role for S-nitrosylation

Journal

PLATELETS
Volume 20, Issue 7, Pages 478-486

Publisher

TAYLOR & FRANCIS INC
DOI: 10.3109/09537100903159375

Keywords

Platelet adhesion; signaling; nitric oxide; cGMP; S-nitrosylation

Funding

  1. Heart Research UK

Ask authors/readers for more resources

Nitric oxide (NO)-mediated inhibition of platelet function occurs primarily through elevations in cGMP, although cGMP-independent mechanisms such as S-nitrosylation have been suggested as alternative NO-signaling pathways. In the present study we investigated the potential for S-nitrosylation to act as a NO-mediated cGMP-independent signaling mechanism in platelets. The NO-donor, S-nitrosoglutathione (GSNO), induced a concentration-dependent inhibition of platelet adhesion to immobilized collagen. In the presence of the soluble guanylyl cyclase inhibitor, ODQ, NO-mediated activation of the cGMP/protein kinase G signaling pathway was ablated. However, ODQ failed to completely abolish the inhibitory effect of NO on collagen-mediated adhesion, confirming that cGMP-independent signaling events contribute to the regulation of platelet adhesion by NO. Biotin-switch analysis of platelets demonstrated the presence of several S-nitrosylated proteins under basal conditions. Treatment of platelets with exogenous NO-donors, at concentrations that inhibited platelet adhesion, increased the number of S-nitrosylated bands and led to hyper-nitrosylation of basally S-nitrosylated proteins. The extent of S-nitrosylation in response to exogenous NO was unaffected by platelet activation. Importantly, platelet activation in the absence of exogenous NO failed to increase S-nitrosylation beyond basal levels, indicating that platelet-derived NO was unable to induce this type of protein modification. Our data demonstrate that S-nitrosylation of platelet proteins in response to exogenous NO may act as a potentially important cGMP-independent signaling mechanism for controlling platelet adhesion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available