4.4 Article

Short-Term Exposure of Zebrafish Embryos to Arecoline Leads to Retarded Growth, Motor Impairment, and Somite Muscle Fiber Changes

Journal

ZEBRAFISH
Volume 12, Issue 1, Pages 58-70

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/zeb.2014.1010

Keywords

-

Funding

  1. National Science Council [NSC 101-2320-B-002-008, NSC 101-2320-B-002-020-MY3]

Ask authors/readers for more resources

The areca nut-chewing habit is common in Southeast Asia, India, and Taiwan, and arecoline is the most abundant and potent component in the areca nut. The effects of arecoline on birth defects have been explored in many species, including chicken, mice, and zebrafish. The effects of arecoline on embryos after long-term exposure are well established; however, the effects of short-term embryo exposure to arecoline are not understood. Using zebrafish, we study the effects of short-term exposure of arecoline on embryos to model the human habit of areca nut-chewing during early pregnancy. Arecoline, at concentrations from 0.001% to 0.04%, was administered to zebrafish embryos from 4 to 24 hours post fertilization. The morphological changes, survival rates, body length, and skeletal muscle fiber structure were then investigated by immunohistochemistry, confocal microscopy, and conventional electron microscopy. With exposure of embryos to increasing arecoline concentrations, we observed a significant decline in the hatching and survival rates, general growth retardation, lower locomotor activity, and swimming ability impairment. Immunofluorescent staining demonstrated a loose arrangement of myosin heavy chains, and ultrastructural observations revealed altered myofibril arrangement and swelling of the mitochondria. In addition, the results of flow-cytometry and JC-1 staining to assay mitochondria activity, as well as reverse transcription-polymerase chain reaction analyses of functional gene expression, revealed mitochondrial dysfunctions after exposure to arecoline. We confirmed that short-term arecoline exposure resulted in retarded embryonic development and decreased locomotor activity due to defective somitic skeletal muscle development and mitochondrial dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available