4.3 Article Proceedings Paper

Fast-ion losses induced by ELMs and externally applied magnetic perturbations in the ASDEX Upgrade tokamak

Journal

PLASMA PHYSICS AND CONTROLLED FUSION
Volume 55, Issue 12, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0741-3335/55/12/124014

Keywords

-

Ask authors/readers for more resources

Phase-space time-resolved measurements of fast-ion losses induced by edge localized modes (ELMs) and ELM mitigation coils have been obtained in the ASDEX Upgrade tokamak by means of multiple fast-ion loss detectors (FILDs). Filament-like bursts of fast-ion losses are measured during ELMs by several FILDs at different toroidal and poloidal positions. Externally applied magnetic perturbations (MPs) have little effect on plasma profiles, including fast-ions, in high collisionality plasmas with mitigated ELMs. A strong impact on plasma density, rotation and fast-ions is observed, however, in low density/collisionality and q(95) plasmas with externally applied MPs. During the mitigation/suppression of type-I ELMs by externally applied MPs, the large fast-ion bursts observed during ELMs are replaced by a steady loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection (NBI) prompt loss signal without MPs. Multiple FILD measurements at different positions, indicate that the fast-ion losses due to static 3D fields are localized on certain parts of the first wall rather than being toroidally/poloidally homogeneously distributed. Measured fast-ion losses show a broad energy and pitch-angle range and are typically on banana orbits that explore the entire pedestal/scrape-off-layer (SOL). Infra-red measurements are used to estimate the heat load associated with the MP-induced fast-ion losses. The heat load on the FILD detector head and surrounding wall can be up to six times higher with MPs than without 3D fields. When 3D fields are applied and density pump-out is observed, an enhancement of the fast-ion content in the plasma is typically measured by fast-ion D-alpha (FIDA) spectroscopy. The lower density during the MP phase also leads to a deeper beam deposition with an inward radial displacement of approximate to 2 cm in the maximum of the beam emission. Orbit simulations are used to test different models for 3D field equilibrium reconstruction including vacuum representation, the free boundary NEMEC code and the two-fluid M3D-C1 code which account for the plasma response. Guiding center simulations predict the maximum level of losses, approximate to 2.6%, with NEMEC 3D equilibrium. Full orbit simulations overestimate the level of losses in 3D vacuum fields with approximate to 15% of lost NBI ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available