4.7 Article

Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128

Journal

PLANTA
Volume 241, Issue 1, Pages 57-67

Publisher

SPRINGER
DOI: 10.1007/s00425-014-2164-5

Keywords

Foxtail millet; Lipid-transfer proteins; Promoter; Embryo; Endosperm transfer cell

Categories

Funding

  1. National Transgenic Major Program of China [2008ZX08003-002, 2009ZX08009093-002, 2011ZX08003-002, 2013ZX08003-002]

Ask authors/readers for more resources

pF128 drives GUS specifically expressed in transgenic seeds of foxtail millet and Zea mays with higher activity than the constitutive CaMV35S promoter and the maize seed-specific 19Z promoter. Foxtail millet (Setaria italica), a member of the Poaceae family, is an important food and fodder crop in arid regions. Foxtail millet is an excellent C-4 crop model owing to its small genome (similar to 490 Mb), self-pollination and availability of a complete genome sequence. F128 was isolated from a cDNA library of foxtail millet immature seeds. Real-time PCR analysis revealed that F128 mRNA was specifically expressed in immature and mature seeds. The highest F128 mRNA level was observed 5 days after pollination and gradually decreased as the seed matured. Sequence analysis suggested that the protein encoded by F128 is likely a protease inhibitor/seed storage protein/lipid-transfer protein. The 1,053 bp 5' flanking sequence of F128 (pF128) was isolated and fused to the GUS reporter gene. The corresponding vector was then transformed into Arabidopsis thaliana, foxtail millet and Zea mays. GUS analysis revealed that pF128 drove GUS expression efficiently and specifically in the seeds of transgenic Arabidopsis, foxtail millet and Zea mays. GUS activity was also detected in Arabidopsis cotyledons. Activity of pF128 was higher than that observed for the constitutive CaMV35S promoter and the maize seed-specific 19 Zein (19Z) promoter. These results indicate that pF128 is a seed-specific promoter. Its application is expected to be of considerable value in plant genetic engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available