4.7 Article

Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana

Journal

PLANTA
Volume 231, Issue 4, Pages 861-873

Publisher

SPRINGER
DOI: 10.1007/s00425-009-1092-2

Keywords

Flavonoid; Induce expression; Major latex proteins; Salt stress; Verticillium wilt resistance

Categories

Funding

  1. National Natural Science Foundation of China [30571210]

Ask authors/readers for more resources

The major latex protein (MLP) gene in Gossypium hirsutum was cloned and designated Gh-MLP. Expression in cotton root was induced by salt stress and Verticillium dahliae toxin, and bioinformatic analysis showed that Gh-MLP encodes a 157-amino acid protein that is similar to members of the MLP subfamily in the Bet v 1 family. Although the structure of MLP is similar to Bet v 1 family proteins, the sequence identity to other subfamilies of Bet v 1 proteins is less than 20%. The Gh-MLP promoter contains potential cis-acting elements for response to salt stress and fungal elicitor. RT-PCR analysis showed that Gh-MLP expression was rapidly induced by NaCl and V. dahliae toxin, and induction was maintained over 72 h. However, Gh-MLP transgenic Arabidopsis thaliana did not show resistance to V. dahiae, salt tolerance was significantly enhanced. In contrast to the wild type, the Gh-MLP transgene allowed plants to germinate normally after treatment with 75 mM NaCl. Total flavonoid was twofold higher in transgenic Arabidopsis than in the control, suggesting that Gh-MLP might be involved in altering flavonoid content. We hypothesize Gh-MLP, like other Bet v 1 family proteins, participates in the binding or transport of ligands through its specific three-dimensional structure, and takes part in defensive responses to biotic and abiotic stresses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available