4.7 Article

OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses

Journal

PLANTA
Volume 230, Issue 1, Pages 227-238

Publisher

SPRINGER
DOI: 10.1007/s00425-009-0934-2

Keywords

Methionine oxidation; Methionine sulfoxide reductase; Oxidative stress; Abiotic stress; Rice

Categories

Funding

  1. Chinese Academy of Sciences [KSCX2-YW-N-010]
  2. National Natural Sciences Foundation of China [30671128, 30621001, 30670195]

Ask authors/readers for more resources

In proteins, methionine residues are especially sensitive to oxidation, leading to the formation of S- and R-methionine sulfoxide diastereoisomers, and these two methionine sulfoxides can be specifically reversed by two types of methionine sulfoxide reductases (MSRs), MSRA and MSRB. Previously, we have identified a gene encoding a putative MSR from NaCl-treated roots of Brazilian upland rice (Oryza sativa L. cv. IAPAR 9) via subtractive suppression hybridization (Wu et al. in Plant Sci 168:847-853, 2005). Blast database analysis indicated that at least four MSRA and three MSRB orthologs exist in rice, and two of them, OsMSRA4.1 and OsMSRB1.1, were selected for further functional analysis. Expression analysis showed that both OsMSRA4.1 and OsMSRB1.1 are constitutively expressed in all organs and can be induced by various stress conditions. Subcellular localization and in vitro activity assay revealed that both OsMSR proteins are targeted to the chloroplast and have MSR activity. Overexpression of either OsMSRA4.1 or OsMSRB1.1 in yeast enhanced cellular resistance to oxidative stress. In addition, OsMSRA4.1-overexpressing transgenic rice plants also showed enhanced viability under salt treatment. Our results provide genetic evidence of the involvement of OsMSRs in the plant stress responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available