4.7 Article

Genetic and biochemical analysis of the TLA1 gene in Chlamydomonas reinhardtii

Journal

PLANTA
Volume 231, Issue 3, Pages 729-740

Publisher

SPRINGER
DOI: 10.1007/s00425-009-1083-3

Keywords

Chlamydomonas; Chlorophyll antenna size; Chl-deficient mutant; Photosynthesis; Polytomella parva; TLA1 gene

Categories

Funding

  1. US Department of Energy [DE-FG36-05GO15041]

Ask authors/readers for more resources

The Chlamydomonas reinhardtii genomic DNA database contains a predicted open reading frame (ORF-P) without an apparent stop-codon and unknown coding sequence, located in close proximity and immediately upstream of the TLA1 gene (GenBank Accession No. AF534570). The latter was implicated in the regulation of the light-harvesting chlorophyll antenna size of photosynthesis (Tetali et al. Planta 225:813-829, 2007). To provide currently lacking information on ORF-P and its potential participation in TLA1 gene expression, thus in the regulation of the chlorophyll antenna size, genetic and biochemical analyses were undertaken. The coding and UTR regions of the ORF-P were defined and delineated from those of the adjacent TLA1 gene. ORF-P is shown to encode a protein with a distinct RING-like zinc finger domain that is present in numerous eukaryotic proteins, believed to play a role in cellular ubiquitination, leading to regulation of cellular processes like signaling, growth, transcription, and DNA repair. It is further shown that the two genes share a 74-bp overlap between the 3' UTR region of ORF-P and the 5' UTR region of TLA1. However, they possess distinct start and stop codons and separate coding sequences, and transcribed as separate mRNAs without any trans-splicing between them. Complementation experiments showed that the TLA1 gene alone is sufficient to rescue the truncated chlorophyll antenna size phenotype of the tla1 mutant. Protein sequence alignments in C. reinhardtii and the colorless microalga Polytomella parva suggested that TLA1 defines the relationship between nucleus and organelle in microalgae, indirectly affecting the development of the chlorophyll antenna size.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available