4.7 Article

Use of silenced plants in allelopathy bioassays: a novel approach

Journal

PLANTA
Volume 229, Issue 3, Pages 569-575

Publisher

SPRINGER
DOI: 10.1007/s00425-008-0856-4

Keywords

Allelopathy; Ethylene; Nicotiana attenuate; Growth inhibition; Plant-plant interaction; Phytohormone

Categories

Funding

  1. Max Planck Society
  2. Indian National Science Academy (INSA)
  3. Deutsche Forschungsgemeinschaft

Ask authors/readers for more resources

Volatile phytohormones or other chemicals can affect processes in distal plant parts but may also influence neighboring plants, and thereby function allelopathically. While this hypothesis has been widely discussed, rigorous tests are lacking. Transgenic plants, silenced in the production of an emitted chemical, are ideal tools to test the hypothesis that the release of a chemical can negatively influence the growth of neighbors (allelopathy). We used isogenic wild type (WT) and genetically transformed plants that lacked the ability to produce ethylene (ir-aco), as both emitters and receivers of this volatile phytohormone in experiments where receiver plants were only exposed to the headspace of WT or ir-aco emitters, in order to evaluate if natural ethylene releases can function allelopathically. Root growth (a proxy of plant fitness) of WT receivers correlated negatively with the number of WT emitters and headspace ethylene concentrations. Reducing ethylene concentrations in the headspace with the ethylene scrubber, KMnO4, and using ir-aco seedlings as emitters restored root growth of WT receiver seedlings. 1-Aminocyclopropane-1-carboxylic acid (ethylene biosynthesis substrate) supplementation to WT but not ir-aco emitters inhibited root growth of ir-aco, but not WT receivers, suggesting increased sensitivity to exogenous ethylene of ir-aco seedlings. We conclude that plants genetically silenced in the production of a putative allelochemical are useful in determining if the emitted chemical functions allelopathically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available