4.7 Article

Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level

Journal

PLANT SCIENCE
Volume 184, Issue -, Pages 14-19

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2011.11.007

Keywords

Ethylene; microRNA; Medicago truncatula; High-throughput sequencing

Funding

  1. Natural Science Foundation of China [90817011]
  2. State Key Laboratory of Vegetation and Environmental Change

Ask authors/readers for more resources

Ethylene is one of the classical plant hormones with a diverse function in plant growth and development. Root elongation is sensitive to ethylene such that treatments with ethylene and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) inhibit root growth. MicroRNA as one type of endogenous, non-coding small RNAs, plays an important role in regulation of plant growth, development and hormonal signaling by affecting expression of target genes. However, there has been no detailed study to evaluate the role of microRNAs in mediation of ethylene-dependent physiological processes in plants. Medicago truncatula is a model plant widely used for investigation of molecular biology in legume species. In this study, we constructed two small RNA libraries from roots of M. truncatula treated with and without ACC. High-throughput sequencing was employed to sequence the small RNA libraries, and more than 30 M raw reads were obtained. We annotated 301 known miRNAs and identified 3 new miRNAs in the two libraries. Treatment of M. truncatula with 10 mu M ACC led to changes in expression of 8 miRNAs. The targets of the ethylene-responsive miRNAs were predicted by bioinformatic approach. The potential role of the ethylene-responsive miRNAs in the ethylene-induced inhibition of root elongation is discussed. These results are useful for functional characterization of miRNAs in mediation of ethylene-dependent physiological processes in general and root elongation in particular. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available