4.7 Article

Genome-wide transcriptional response of Populus euphratica to long-term drought stress

Journal

PLANT SCIENCE
Volume 195, Issue -, Pages 24-35

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2012.06.005

Keywords

Drought; Gene expression; Populus euphratica; Microarray; Transcription factors; Heat-shock proteins

Funding

  1. National Science Foundation of China [30972339, 31070597]
  2. national 12th Five-Year technology based plan topic [2011BAD38B01]

Ask authors/readers for more resources

Populus euphratica is native to semi-arid regions of the Xinjiang Uyghur Autonomous Region of China, and studying its drought responses will greatly increase the understanding of how trees acclimate to drought. Water was withheld for seven weeks in four different drought stress treatments, with regime 1 being the least drought stressed and regime 4 being the most, and the poplar's transcriptional profiles examined with Affymetrix Poplar GeneChip microarrays. The number of significantly up or down transcriptional changes increased with the severity of drought stress, with regime 1, 2, 3 and 4 showing 952, 1354, 2138 and 2360 altered transcripts, respectively. Only 277 of these were found in common across all four regimes, while 1938 transcripts were found to be unique to the individual treatments. Genes with altered transcript abundance included members of the transcription factor families AP2/EREPB, bZIP, NAC, NF-Y, WRKY, MYB and Homeobox, as well as genes for the small HSP. HSP70 and HSP90 heat shock protein families. Analysis of the transcript data from these experiments indicated that P. euphratica activates specific regulatory pathways according to the degree of drought stress it receives. These results provide important insights into the molecular mechanisms underpinning the drought stress responses of poplar, as well as providing candidates for future experimentation. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available