4.7 Review

Approaches and challenges to engineering seed phytate and total phosphorus

Journal

PLANT SCIENCE
Volume 177, Issue 4, Pages 281-296

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2009.06.012

Keywords

Phytic acid; Seed phosphorus; Phytase; Plant stress response; Metabolic integration; Inositol phosphates

Ask authors/readers for more resources

About 75% of seed total phosphorus (P) is found in a single compound, phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate or InsP(6)). Phytic acid is not efficiently utilized by monogastric animals (poultry, swine, fish), which creates phosphorus management and environmental impact problems in animal production. Phytic acid also functions as an antinutrient when consumed in human and animal diets. These problems can be addressed via feed or food supplementation with P and other minerals or phytase, or more efficiently and sustainably at their source by crop breeding or bioengineering of low-phytic acid/high-available P crops. However, since phytic acid and its synthetic pathways are central to a number of metabolic, developmental and signaling pathways important to plant function and productivity, low-phytate can translate into low-yield or stress susceptibility. The biological functions of phytic acid and identification of genetic resources and strategies useful in engineering high-yielding, stress-tolerant low-phytate germplasm will be reviewed here. One promising approach that can avoid undesirable outcomes due to impacts on phytic acid metabolism is to engineer high-phytase seeds. In contrast to the issue of seed phytic acid, there has been relatively little interest in seed total P as a trait of agricultural importance. However, seed total P is very important to the long-term goal of sustainable and environmentally friendly agricultural production. Certain low-phytate genotypes are also low-total P, which might represent the ideal seed P trait for nearly all end-uses, including uses in ruminant and non-ruminant feeds and in biofuels production. Future research directions will include screening for additional genetic resources such as seed total P mutants. Published by Elsevier Ireland Ltd

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available