4.7 Article

Involvement of nitric oxide in water stress-induced responses of cucumber roots

Journal

PLANT SCIENCE
Volume 177, Issue 6, Pages 682-690

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2009.09.007

Keywords

Nitric oxide; Water deficit; Cucumber; Praline; Lipoxygenase; Membrane damage

Ask authors/readers for more resources

The effect of water deficit on nitric oxide (NO) generation was investigated in cucumber (Cucumis sativus cv. Dar) seedling roots using bio-imaging with an NO-selective fluorophor, diaminofluorescein-2-diacetate (DAF-2DA). Roots subjected to mild (5 and 10 h) water deficit showed slightly enhanced NO synthesis in cells of root tips and in the surrounding elongation zone. However, severe (17 h) stress resulted in an intensive NO production localized mainly in and above the elongation zone. Water stress-induced NO generation was blocked by a specific NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) as well as nitrate reductase (NR) and partially by nitric oxide synthase (NOS-like) inhibitors. A pharmacological approach was used in order to verify the capacity of NO to induce adaptive responses of cucumber roots to water deficit. A positive correlation was found between NO donor (SNP 100 mu M and GSNO 100 mu M) pretreatment and plant hydration status, measured as relative water content (RWC) during progressive dehydration. At an early stage (5 h) of stress duration NO caused a periodical increase in lipoxygenase (LOX) activity, correlated with time-dependent enhancement of lipid peroxidation. Beginning from 10 h up to severe stress (17 h) exogenous NO was able to diminish LOX activity and alleviate water deficit-induced membrane permeability and lipid peroxidation, measured as TBARS content and visualised by histochemical staining in situ. Observed changes via NO were accompanied by a significant reduction of proline level, suggesting that the accumulation of this osmolyte might not be essential in water stress tolerance. Obtained results clearly indicate that NO augmentation is likely to help the plant at the initial stage of tissue dehydration to trigger efficient mechanisms, mitigating severe water deficit effects in roots of cucumber seedlings. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available