4.7 Article

Proteomics research on the effects of applying selenium to apple leaves on photosynthesis

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 70, Issue -, Pages 1-6

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2013.05.008

Keywords

Apple leaf; Photosynthesis; Proteomics analysis; Selenium

Categories

Funding

  1. Natural Science Foundation of China (NSFC) [31171943]
  2. Foundation of the important science research project of Henan province [92101110600]

Ask authors/readers for more resources

Untreated and Se-enriched apple leaves (Malus domestica Borkh. cv. 'Red Fuji') were used as the experimental materials. Proteomes of the differentially prepared tissues were compared through two-dimensional electrophoresis analysis and mass spectrum identification. There were 505 more protein spots in the proteome of the Se-enriched leaves than in the control leaves. Forty-seven protein spots were significantly differentially expressed (P < 0.05), among those, 32 protein spots were up-regulated while 12 protein points were down-regulated, and three new protein spots were found with the relative molecular masses of 31, 29, 26 kDa. Twenty-three protein spots with good shape and significant expression were selected for mass spectrometry analysis. These spots were excised from the gel and analyzed by a matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Peptide mass fingerprints (PMF) of all the proteins were submitted to NCBInr for protein identification, and 10 differential proteins were positively identified. Biological information of the identified proteins was found via http://www.uniprot.org/. There were three (1475, 1479, 1527) ribulose-1,5-bisphosphate carboxylase/oxygenase large subunits (Rubisco), two ribulose-1,5-bisphosphate carboxylases (346, 486) belonging to the Rubisco large chain family, one photosystem I reaction center subunit II (297), one chloroplast oxygen-evolving enhancer protein 1 (619), one 0s12g0127100 protein whose function was unknown (927), one monodehydroascorbate reductase (1451), and one polyphenol oxidase V (1596). The major subcellular location for these proteins was the chloroplast, and they play important roles in photosynthesis and stress resistance for plants. (c) 2013 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available