4.7 Review

Plants, MEN and SIN

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 46, Issue 1, Pages 1-10

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2007.10.010

Keywords

SIN; MEN; AtSGP; AtMAP3Kepsilon; signaling; cell type specification

Categories

Ask authors/readers for more resources

In fission yeast, the onset of septation is signalled through the septum initiation network (SIN) signaling pathway. Similarly, in budding yeast the onset of budding is signalled through the mitotic exit network (MEN) pathway. We previously characterized in Arabidopsis signaling elements (GTPases, kinases) closely related to the core elements (spg 1p/TEM1p, cdc7p/CDC15p) of the SIN and MEN pathways. Our first results suggested that a plant signaling pathway must be used to coordinate mitotic exit with cytokinesis. This review questioned the value of such an hypothesis in a multicellular organism. The core elements (G-protein, kinase) of the SIN and MEN pathways were only detected in fungi, plants and Mycetozoa. We also noticed that AtSGP GTPase and AtMAP3Kepsilon kinase revealed two paralogues in Arabidopsis. Although Arabidopsis genes complement fission yeast mutants, and Arabidopsis proteins interact with fission yeast proteins, plants do not use these core elements to coordinate the termination of cell division with cytokinesis. Transcriptional regulation and expression data suggest a function for the plant SIN-like elements in the control of cell type specification. Exploring the evolutionary conservation of an ancient signaling pathway provides evidence that evolution has recycled regulatory elements for elaborating a new signaling avenue. (c) 2007 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available