4.8 Article

Unraveling the Mechanism Underlying the Glycosylation and Methylation of Anthocyanins in Peach

Journal

PLANT PHYSIOLOGY
Volume 166, Issue 2, Pages 1044-1058

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.114.246876

Keywords

-

Categories

Funding

  1. National Program on Key Basic Research Projects of China (973 Program) [2011CB100600]
  2. National 863 Program of China [2011AA10020600-02]

Ask authors/readers for more resources

Modification of anthocyanin plays an important role in increasing its stability in plants. Here, six anthocyanins were identified in peach (Prunus persica), and their structural diversity is attributed to glycosylation and methylation. Interestingly, peach is quite similar to the wild species Prunus ferganensis but differs from both Prunus davidiana and Prunus kansueasis in terms of anthocyanin composition in flowers. This indicates that peach is probably domesticated from P. ferganensis. Subsequently, genes responsible for both methylation and glycosylation of anthocyanins were identified, and their spatiotemporal expression results in different patterns of anthocyanin accumulation in flowers, leaves, and fruits. Two tandem-duplicated genes encoding flavonoid 3-O-glycosyltransferase (F3GT) in peach, PpUGT78A1 and PpUGT78A2, showed different activity toward anthocyanin, providing an example of divergent evolution of F3GT genes in plants. Two genes encoding anthocyanin O-methyltransferase (AOMT), PpAOMT1 and PpAOMT2, are expressed in leaves and flowers, but only PpAOMT2 is responsible for the O-methylation of anthocyanins at the 3' position in peach. In addition, our study reveals a novel branch of UGT78 genes in plants that lack the highly conserved intron 2 of the UGT gene family, with a great variation of the amino acid residue at position 22 of the plant secondary product glycosyltransferase box. Our results not only provide insights into the mechanisms underlying anthocyanin glycosylation and methylation in peach but will also aid in future attempts to manipulate flavonoid biosynthesis in peach as well as in other plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available