4.8 Article

Feruloyl-CoA 6 '-Hydroxylase1-Dependent Coumarins Mediate Iron Acquisition from Alkaline Substrates in Arabidopsis

Journal

PLANT PHYSIOLOGY
Volume 164, Issue 1, Pages 160-172

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.113.228544

Keywords

-

Categories

Funding

  1. Bundesministerium fur Bildung und Forschung, Germany [FKZ 0315458B]
  2. Leibniz Association Germany

Ask authors/readers for more resources

Although iron (Fe) is one of the most abundant elements in the earth's crust, its low solubility in soils restricts Fe uptake by plants. Most plant species acquire Fe by acidifying the rhizosphere and reducing ferric to ferrous Fe prior to membrane transport. However, it is unclear how these plants access Fe in the rhizosphere and cope with high soil pH. In a mutant screening, we identified 2-oxoglutarate-dependent dioxygenase Feruloyl-CoA 6'-Hydroxylase1 (F6'H1) to be essential for tolerance of Arabidopsis (Arabidopsis thaliana) to high pH-induced Fe deficiency. Under Fe deficiency, F69H1 is required for the biosynthesis of fluorescent coumarins that are released into the rhizosphere, some of which possess Fe(III)-mobilizing capacity and prevent f6'h1 mutant plants from Fe deficiency-induced chlorosis. Scopoletin was the most prominent coumarin found in Fe-deficient root exudates but failed to mobilize Fe(III), while esculetin, i.e. 6,7-dihydroxycoumarin, occurred in lower amounts but was effective in Fe(III) mobilization. Our results indicate that Fe-deficient Arabidopsis plants release Fe(III)-chelating coumarins as part of the strategy I-type Fe acquisition machinery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available