4.8 Article

RNA-Seq of Arabidopsis Pollen Uncovers Novel Transcription and Alternative Splicing

Journal

PLANT PHYSIOLOGY
Volume 162, Issue 2, Pages 1092-1109

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.112.211441

Keywords

-

Categories

Funding

  1. National Science Foundation Research Coordination Network for Integrative Pollen Biology [MCB-0955431]
  2. U.S. Department of Agriculture Current Research Information System [5335-21000-030-00D]
  3. National Science Foundation Arabidopsis [0820371]
  4. University of North Carolina-Charlotte
  5. University of North Carolina General Administration
  6. Div Of Biological Infrastructure
  7. Direct For Biological Sciences [0820371] Funding Source: National Science Foundation

Ask authors/readers for more resources

Pollen grains of Arabidopsis (Arabidopsis thaliana) contain two haploid sperm cells enclosed in a haploid vegetative cell. Upon germination, the vegetative cell extrudes a pollen tube that carries the sperm to an ovule for fertilization. Knowing the identity, relative abundance, and splicing patterns of pollen transcripts will improve our understanding of pollen and allow investigation of tissue-specific splicing in plants. Most Arabidopsis pollen transcriptome studies have used the ATH1 microarray, which does not assay splice variants and lacks specific probe sets for many genes. To investigate the pollen transcriptome, we performed high-throughput sequencing (RNA-Seq) of Arabidopsis pollen and seedlings for comparison. Gene expression was more diverse in seedling, and genes involved in cell wall biogenesis were highly expressed in pollen. RNA-Seq detected at least 4,172 protein-coding genes expressed in pollen, including 289 assayed only by nonspecific probe sets. Additional exons and previously unannotated 59 and 39 untranslated regions for pollen-expressed genes were revealed. We detected regions in the genome not previously annotated as expressed; 14 were tested and 12 were confirmed by polymerase chain reaction. Gapped read alignments revealed 1,908 high-confidence new splicing events supported by 10 or more spliced read alignments. Alternative splicing patterns in pollen and seedling were highly correlated. For most alternatively spliced genes, the ratio of variants in pollen and seedling was similar, except for some encoding proteins involved in RNA splicing. This study highlights the robustness of splicing patterns in plants and the importance of ongoing annotation and visualization of RNA-Seq data using interactive tools such as Integrated Genome Browser.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available