4.8 Article

Calcium-Dependent Protein Kinase CPK6 Positively Functions in Induction by Yeast Elicitor of Stomatal Closure and Inhibition by Yeast Elicitor of Light-Induced Stomatal Opening in Arabidopsis

Journal

PLANT PHYSIOLOGY
Volume 163, Issue 2, Pages 591-599

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.113.224055

Keywords

-

Categories

Ask authors/readers for more resources

Yeast elicitor (YEL) induces stomatal closure that is mediated by a Ca2+-dependent signaling pathway. A Ca2+-dependent protein kinase, CPK6, positively regulates activation of ion channels in abscisic acid and methyl jasmonate signaling, leading to stomatal closure in Arabidopsis (Arabidopsis thaliana). YEL also inhibits light-induced stomatal opening. However, it remains unknown whether CPK6 is involved in induction by YEL of stomatal closure or in inhibition by YEL of light-induced stomatal opening. In this study, we investigated the roles of CPK6 in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. Disruption of CPK6 gene impaired induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening. Activation by YEL of nonselective Ca2+-permeable cation channels was impaired in cpk6-2 guard cells, and transient elevations elicited by YEL in cytosolic-free Ca2+ concentration were suppressed in cpk6-2 and cpk6-1 guard cells. YEL activated slow anion channels in wild-type guard cells but not in cpk6-2 or cpk6-1 and inhibited inward-rectifying K+ channels in wild-type guard cells but not in cpk6-2 or cpk6-1. The cpk6-2 and cpk6-1 mutations inhibited YEL-induced hydrogen peroxide accumulation in guard cells and apoplast of rosette leaves but did not affect YEL-induced hydrogen peroxide production in the apoplast of rosette leaves. These results suggest that CPK6 positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis and is a convergent point of signaling pathways for stomatal closure in response to abiotic and biotic stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available