4.8 Article

Repression of Sucrose/Ultraviolet B Light-Induced Flavonoid Accumulation in Microbe-Associated Molecular Pattern-Triggered Immunity in Arabidopsis

Journal

PLANT PHYSIOLOGY
Volume 158, Issue 1, Pages 408-422

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.111.183459

Keywords

-

Categories

Funding

  1. Max Planck Society
  2. Deutsche Forschungsgemeinschaft [SFB670]
  3. International Max Planck Research School

Ask authors/readers for more resources

Recognition of microbe-associated molecular patterns (MAMPs) leads to the generation of MAMP-triggered immunity (MTI), which restricts the invasion and propagation of potentially infectious microbes. It has been described that the perception of different bacterial and fungal MAMPs causes the repression of flavonoid induction upon light stress or sucrose application. However, the functional significance of this MTI-associated signaling output remains unknown. In Arabidopsis (Arabidopsis thaliana), FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR act as the pattern recognition receptors for the bacterial MAMP epitopes flg22 (of flagellin) and elf18 (of elongation factor [EF]-Tu), respectively. Here, we reveal that reactive oxygen species spiking and callose deposition are dispensable for the repression of flavonoid accumulation by both pattern recognition receptors. Importantly, FLS2-triggered activation of PATHOGENESIS-RELATED (PR) genes and bacterial basal defenses are enhanced in transparent testa4 plants that are devoid of flavonoids, providing evidence for a functional contribution of flavonoid repression to MTI. Moreover, we identify nine small molecules, of which eight are structurally unrelated, that derepress flavonoid accumulation in the presence of flg22. These compounds allowed us to dissect the FLS2 pathway. Remarkably, one of the identified compounds uncouples flavonoid repression and PR gene activation from the activation of reactive oxygen species, mitogen-activated protein kinases, and callose deposition, corroborating a close link between the former two outputs. Together, our data imply a model in which MAMP-induced repression of flavonoid accumulation serves a role in removing the inherent inhibitory action of flavonoids on an MTI signaling branch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available