4.8 Article

Oscillatory Growth in Lily Pollen Tubes Does Not Require Aerobic Energy Metabolism

Journal

PLANT PHYSIOLOGY
Volume 152, Issue 2, Pages 736-746

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.109.150896

Keywords

-

Categories

Funding

  1. National Science Foundation [MCB-0516852, MCB-0847876]

Ask authors/readers for more resources

Oscillatory tip growth in pollen tubes depends on prodigious amounts of energy. We have tested the hypothesis that oscillations in the electron transport chain lead to growth oscillations in lily (Lilium formosanum). Using three respiratory inhibitors, oligomycin, antimycin A, and cyanide, we find that pollen tube growth is much less sensitive to respiratory inhibition than respiration is. All three block respiration at concentrations severalfold lower than necessary to inhibit growth. Mitochondrial NAD(P)H and potentiometric JC-1 fluorescence, employed as markers for electron transport chain activity, rise rapidly in response to oligomycin, as expected. Pollen tube growth stops for several minutes before resuming. Subsequent growth has a lower mean rate, but continues to oscillate, albeit with a longer period. NAD(P)H fluorescence no longer exhibits coherent oscillations, and mitochondria no longer congregate directly behind the apex: they distribute evenly throughout the cell. Postinhibition growth relies on aerobic fermentation for energy production as revealed by an increase in ethanol in the media. These data suggest that oscillatory growth depends not on a single oscillatory pacemaker but rather is an emergent property arising from a number of stable limit cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available