4.8 Article

Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula

Journal

PLANT PHYSIOLOGY
Volume 146, Issue 4, Pages 2020-2035

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.107.115667

Keywords

-

Categories

Ask authors/readers for more resources

Legumes can acquire nitrogen (N) from NO3-, NH4+, and N-2 (through symbiosis with Rhizobium bacteria); however, the mechanisms by which uptake and assimilation of these N forms are coordinately regulated to match the N demand of the plant are currently unknown. Here, we find by use of the split-root approach in Medicago truncatula plants that NO3- uptake, NH4+ uptake, and N-2 fixation are under general control by systemic signaling of plant N status. Indeed, irrespective of the nature of the N source, N acquisition by one side of the root system is repressed by high N supply to the other side. Transcriptome analysis facilitated the identification of over 3,000 genes that were regulated by systemic signaling of the plant N status. However, detailed scrutiny of the data revealed that the observation of differential gene expression was highly dependent on the N source. Localized N starvation results, in the unstarved roots of the same plant, in a strong compensatory up-regulation of NO3- uptake but not of either NH4+ uptake or N-2 fixation. This indicates that the three N acquisition pathways do not always respond similarly to a change in plant N status. When taken together, these data indicate that although systemic signals of N status control root N acquisition, the regulatory gene networks targeted by these signals, as well as the functional response of the N acquisition systems, are predominantly determined by the nature of the N source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available