4.8 Article

MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in arabidopsis

Journal

PLANT PHYSIOLOGY
Volume 146, Issue 3, Pages 1293-1304

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.107.113829

Keywords

-

Categories

Ask authors/readers for more resources

Colonization of Arabidopsis thaliana roots by nonpathogenic Pseudomonas fluorescens WCS417r bacteria triggers a jasmonate/ethylene-dependent induced systemic resistance (ISR) that is effective against a broad range of pathogens. Microarray analysis revealed that the R2R3-MYB-like transcription factor gene MYB72 is specifically activated in the roots upon colonization by WCS417r. Here, we show that T-DNA knockout mutants myb72-1 and myb72-2 are incapable of mounting ISR against the pathogens Pseudomonas syringae pv tomato, Hyaloperonospora parasitica, Alternaria brassicicola, and Botrytis cinerea, indicating that MYB72 is essential to establish broad-spectrum ISR. Overexpression of MYB72 did not result in enhanced resistance against any of the pathogens tested, demonstrating that MYB72 is not sufficient for the expression of ISR. Yeast two-hybrid analysis revealed that MYB72 physically interacts in vitro with the ETHYLENE INSENSITIVE3 (EIN3)-LIKE3 transcription factor EIL3, linking MYB72 function to the ethylene response pathway. However, WCS417r activated MYB72 in ISR-deficient, ethylene-insensitive ein2-1 plants. Moreover, exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate induced wild-type levels of resistance in myb72-1, suggesting that MYB72 acts upstream of ethylene in the ISR pathway. Collectively, this study identified the transcriptional regulator MYB72 as a novel ISR signaling component that is required in the roots during early signaling steps of rhizobacteria-mediated ISR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available