4.8 Review

Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion

Journal

PLANT PHYSIOLOGY
Volume 148, Issue 2, Pages 894-907

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.108.120154

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [30671480]
  2. National High Technology Research and Development Program (863 Program) of China [2006AA100109]

Ask authors/readers for more resources

Aquaporins are water channel proteins that facilitate the passage of water through biological membranes and play a crucial role in plant growth. We show that ethylene treatment significantly reduced petal size, inhibited expansion of petal abaxial subepidermal cells, and decreased petal water content in rose (Rosa hybrida 'Samantha'). Here, we report the isolation of a plasma membrane aquaporin (PIP) gene, Rh-PIP2;1, and characterized its potential role in ethylene-inhibited petal expansion. Rh-PIP2;1 is mainly localized on the plasma membrane and belongs to the class 2 subfamily of PIP proteins. We show that Rh-PIP2;1 is an active water channel. The transcripts of Rh-PIP2;1 are highly abundant in petal epidermal cells, especially in the abaxial subepidermal cells. The expression of Rh-PIP2;1 is highly correlated with petal expansion and tightly down-regulated by ethylene. Furthermore, we demonstrate that in Rh-PIP2;1-silenced flowers, petal expansion was greatly inhibited and anatomical features of the petals were similar to those of ethylene-treated flowers. We argue that Rh-PIP2;1 plays an important role in petal cell expansion and that ethylene inhibits petal expansion of roses at least partially by suppressing Rh-PIP2;1 expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available