4.5 Article

Genotypic variation and population structure of Sclerotinia trifoliorum infecting chickpea in California

Journal

PLANT PATHOLOGY
Volume 63, Issue 5, Pages 994-1004

Publisher

WILEY
DOI: 10.1111/ppa.12176

Keywords

group I intron; haplotype; microsatellite; mycelial compatibility grouping; Sclerotinia trifoliorum

Funding

  1. United States Department of Agriculture - Agricultural Research Service National Sclerotinia Initiative

Ask authors/readers for more resources

Sclerotinia trifoliorum, an important pathogen of cool season legumes, displays both homothallism and heterothallism in its life cycle, unique among members of the genus Sclerotinia. Very little is known about its genetic diversity and population structure. A sample of 129 isolates of S.trifoliorum from diseased chickpea in California was investigated for genetic diversity, population differentiation and reproductive mode. Genetic diversity was estimated using mycelial compatibility (MCG) phenotypes, rDNA intron variation, and allelic diversity at seven microsatellite loci. Genetic analysis revealed high levels of genotypic diversity demonstrated by high genotypic richness (088). Similarly, high levels of gene diversity (mean expected heterozygosity H-E=068) were observed at the microsatellite loci. Geographic populations of S.trifoliorum were highly admixed as evident from low F-ST values (0-011), suggesting high contemporary or historical gene flow. Hierarchical analysis of molecular variance showed that more than 92% of the genetic variation occurred among isolates within populations. Bayesian clustering analysis identified four cryptic genetic populations that were not correlated to geographic location, and index of multilocus association was non-significant in each of the four genetic populations. However, the presence of identical haplotypes within and among populations indicates clonal reproduction. The high levels of haplotype diversity and population heterogeneity, a lack of correspondence between MCG and microsatellite haplotype, and low levels of population differentiation suggest that populations of S.trifoliorum in chickpea have been undergoing extensive outcrossing and migration events probably shaped by human-mediated dissemination, the underlying diverse cropping systems, and chickpea disease management practices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available