4.7 Article Proceedings Paper

Genome-wide transcriptome and proteome analyses of tobacco psaA and psbA deletion mutants

Journal

PLANT MOLECULAR BIOLOGY
Volume 76, Issue 3-5, Pages 407-423

Publisher

SPRINGER
DOI: 10.1007/s11103-011-9731-y

Keywords

Photosystem I and II ( PSI and PSII); Plastome transformation; Transcriptomic and proteomic analysis; Retrograde and anterograde signals; NEP and PEP RNA polymerases; ROS scavenging mechanisms

Ask authors/readers for more resources

Photosynthesis in higher land plants is a complex process involving several proteins encoded by both nuclear and chloroplast genomes that require a highly coordinated gene expression. Significant changes in plastid differentiation and biochemical processes are associated with the deletion of chloroplast genes. In this study we report the genome-wide responses caused by the deletion of tobacco psaA and psbA genes coding core components of photosystem I (PSI) and photosystem II (PSII), respectively, generated through a chloroplast genetic engineering approach. Transcriptomic and quantitative proteomic analysis showed the down regulation of specific groups of nuclear and chloroplast genes involved in photosynthesis, energy metabolism and chloroplast biogenesis. Moreover, our data show simultaneous activation of several defense and stress responsive genes including those involved in reactive oxygen species (ROS) scavenging mechanisms. A major finding is the differential transcription of the plastome of deletion mutants: genes known to be transcribed by the plastid encoded polymerase (PEP) were generally down regulated while those transcribed by the nuclear encoded polymerase (NEP) were up regulated, indicating simultaneous activation of multiple signaling pathways in response to disruption of PSI and PSII complexes. The genome wide transcriptomic and proteomic analysis of the a dagger psaA and a dagger psbA deletion mutants revealed a simultaneous up and down regulation of the specific groups of genes located in nucleus and chloroplasts suggesting a complex circuitry involving both retrograde and anterograde signaling mechanisms responsible for the coordinated expression of nuclear and chloroplast genomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available