4.7 Article

Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings

Journal

PLANT MOLECULAR BIOLOGY
Volume 77, Issue 1-2, Pages 129-144

Publisher

SPRINGER
DOI: 10.1007/s11103-011-9799-4

Keywords

Soybean; Seedling; Flooding; Transcriptome

Funding

  1. Japan Society for the Promotion of Science [1980015]

Ask authors/readers for more resources

To understand the transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings, genome-wide changes in gene expression were analyzed using a soybean microarray chip containing 42,034 60-mer oligonucleotide probes. More than 6,000 of flooding-responsive genes in the roots including hypocotyl of soybean seedlings were identified. The transcriptional analysis showed that genes related to photosynthesis, glycolysis, Ser-Gly-Cys group amino acid synthesis, regulation of transcription, ubiquitin-mediated protein degradation and cell death were significantly up-regulated by flooding. Meanwhile, genes related to cell wall synthesis, secondary metabolism, metabolite transport, cell organization, chromatin structure synthesis, and degradation of aspartate family amino acid were significantly down-regulated. Comparison of the responses with other plants showed that genes encoding pyrophosphate dependent phosphofructokinase were down-regulated in flooded soybean seedlings, however, those in tolerant plants were up-regulated. Additionally, genes related to RNA processing and initiation of protein synthesis were not up-regulated in soybean, however, those in tolerant plants were up-regulated. Furthermore, we found that flooding-specific up-regulation of genes encoding small proteins which might have roles in acclimation to flooding. These results suggest that functional disorder of acclimative responses to flooding through transcriptional and post-transcriptional regulations is involved in occurring flooding injury to soybean seedlings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available