4.7 Review

Plant MCM proteins: role in DNA replication and beyond

Journal

PLANT MOLECULAR BIOLOGY
Volume 77, Issue 6, Pages 537-545

Publisher

SPRINGER
DOI: 10.1007/s11103-011-9836-3

Keywords

Cell cycle; Pre-replicative complex (pre-RC); DNA replication licensing; Licensing factor; Mini-chromosome maintenance (MCM)

Funding

  1. Department of Biotechnology (DBT), Government of India

Ask authors/readers for more resources

Mini-chromosome maintenance (MCM) proteins form heterohexameric complex (MCM2-7) to serve as licensing factor for DNA replication to make sure that genomic DNA is replicated completely and accurately once during S phase in a single cell cycle. MCMs were initially identified in yeast for their role in plasmid replication or cell cycle progression. Each of six MCM contains highly conserved sequence called MCM box, which contains two ATPase consensus Walker A and Walker B motifs. Studies on MCM proteins showed that (a) the replication origins are licensed by stable binding of MCM2-7 to form pre-RC (pre-replicative complex) during G1 phase of the cell cycle, (b) the activation of MCM proteins by CDKs (cyclin-dependent kinases) and DDKs (Dbf4-dependent kinases) and their helicase activity are important for pre-RC to initiate the DNA replication, and (c) the release of MCMs from chromatin renders the origins unlicensed. DNA replication licensing in plant is, in general, less characterized. The MCMs have been reported from Arabidopsis, maize, tobacco, pea and rice, where they are found to be highly expressed in dividing tissues such as shoot apex and root tips, localized in nucleus and cytosol and play important role in DNA replication, megagametophyte and embryo development. The identification of six MCM coding genes from pea and Arabidopsis suggest six distinct classes of MCM protein in higher plant, and the conserved function right across the eukaryotes. This overview of MCMs contains an emphasis on MCMs from plants and the novel role of MCM6 in abiotic stress tolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available