4.8 Article

Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A

Journal

PLANT JOURNAL
Volume 79, Issue 2, Pages 334-347

Publisher

WILEY
DOI: 10.1111/tpj.12550

Keywords

bread wheat chromosome 6A; whole-genome profiling; LINEAR TOPOLOGICAL CONTIGS; anchored physical map; bacterial artificial chromosome contigs; technical advance

Categories

Funding

  1. German Ministry of Education and Research (BMBF) in the framework of the TRITEX [FKZ 0315954A]
  2. GABI-FUTURE Start Program [FKZ 0315071]

Ask authors/readers for more resources

Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence-based physical map of wheat chromosome 6A using whole-genome profiling (WGP (TM)). The bacterial artificial chromosome (BAC) contig assembly tools FINGERPRINTED CONTIG (FPC) and LINEAR TOPOLOGICAL CONTIG (LTC) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that LTC created a highly robust assembly compared with those formed by FPC. The LTC assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L-50 of 1 Mb. To facilitate in silico anchoring, WGP (TM) tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the 'decoration' of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map-based isolation of agronomically important genes/quantitative trait loci located on this chromosome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available