4.8 Article

Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease

Journal

PLANT JOURNAL
Volume 76, Issue 5, Pages 888-899

Publisher

WILEY-BLACKWELL
DOI: 10.1111/tpj.12335

Keywords

double-strand break; homing endonuclease; mutagenesis; maize; Zea mays L; technical advance

Categories

Ask authors/readers for more resources

The I-CreI homing endonuclease from Chlamydomonas reinhardti has been used as a molecular tool for creating DNA double-strand breaks and enhancing DNA recombination reactions in maize cells. The DNA-binding properties of this protein were re-designed to recognize a 22bp target sequence in the 5th exon of MS26, a maize fertility gene. Three versions of a single-chain endonuclease, called Ems26, Ems26+ and Ems26++, cleaved their intended DNA site within the context of a reporter assay in a mammalian cell line. When the Ems26++ version was delivered to maize Black Mexican Sweet cells by Agrobacterium-mediated transformation, the cleavage resulted in mutations at a co-delivered extra-chromosomal ms26-site in up to 8.9% of the recovered clones. Delivery of the same version of Ems26 to immature embryos resulted in mutations at the predicted genomic ms26-site in 5.8% of transgenic T-0 plants. This targeted mutagenesis procedure yielded small deletions and insertions at the Ems26 target site consistent with products of double-strand break repair generated by non-homologous end joining. One of 21 mutagenized T-0 plants carried two mutated alleles of the MS26 gene. As expected, the bi-allelic mutant T-0 plant and the T-1 progeny homozygous for the ms26 mutant alleles were male-sterile. This paper described the second maize chromosomal locus (liguless-1 being the first one) mutagenized by a re-designed I-CreI-based endonuclease, demonstrating the general utility of these molecules for targeted mutagenesis in plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available